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Abstract. The purpose of this article is to investigate the relationship be-

tween suborbifolds and orbifold embeddings. In particular, we give natural
definitions of the notion of suborbifold and orbifold embedding and provide

many examples. Surprisingly, we show that there are (topologically embed-

ded) smooth suborbifolds which do not arise as the image of a smooth orbifold
embedding. We are also able to characterize those suborbifolds which can

arise as the images of orbifold embeddings. As an application, we show that

a length-minimizing curve (a geodesic segment) in a Riemannian orbifold can
always be realized as the image of an orbifold embedding.

1. Introduction

The purpose of this article is to investigate some of the difficulties and subtleties
associated with the study of the differential topology of smooth orbifolds. It will
be no surprise to anyone who has taken more than a cursory look at orbifolds,
that the goal of extending the most basic notions from the differential topology
of manifolds to orbifolds has not been achieved in a universally accepted manner
in the nearly 60 years since Satake [17, 18] introduced V-manifolds (now, orbifolds
as popularized by Thurston [19]). In the six decades since they were introduced,
there has been a proliferation of definitions and ad-hoc refinements each used to
overcome some inherent difficulty unearthed while attempting an orbifold general-
ization of a manifold result. These challenges are readily acknowledged by experts
and often provide the inspiration for new research on orbifolds. In fact, it has been
humorously mentioned that there exists today a partial ordering for the plethora of
definitions related to orbifolds, and that one can only imagine what an application
of Zorn’s lemma might yield! The aim here is much less ambitious. Our goal is
to expose and investigate in detail the subtle notion of suborbifold and its relation
to the natural idea of an orbifold embedding. Some of the particular difficulties
involving the notion of suborbifolds and orbifold embeddings have already been
noted in the orbifold literature [1, 4, 5, 9], and more recently in [7, 10, 11, 14]. For
manifolds, it is a fundamental result of differential topology that submanifolds are
precisely the images of embeddings [12, Theorem 3.1]. In fact, many authors use
this characterization as the definition of submanifold. Our main result identifies
necessary and sufficient conditions which characterize precisely when a suborbifold
can be realized as the image of an orbifold embedding. Unlike the case for man-
ifolds, we also show that suborbifolds exist which are not the images of orbifold
embeddings.
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Theorem 1. Let P be a smooth suborbifold of a smooth orbifold O.

(1) Then, there exists an orbifold P ′ and a topological embedding of underlying
spaces ι : XP′ → XO so that ι(XP′) = XP if and only if P is saturated.

(2) Moreover, there exists a complete orbifold embedding ?ι = (ι, {ι̃x}, {Θι,x}) :
P ′ → O covering ι if and only if P is both saturated and split.

The definitions of what it means for a suborbifold to be saturated or split appear
in section 2.1. The definition of complete orbifold map appears in section 3.1.

As an application of Theorem 1 to length minimizing geodesics in Riemannian
orbifolds, we have the following corollary which follows from the characterization
of length minimizing geodesic segments found in [2, 3].

Corollary 2. Let O be a Riemannian orbifold and let X ⊂ XO be the underlying
point set of a length-minimizing curve joining two points of O. Then, there is a
suborbifold P ⊂ O whose underlying space XP = X is the image of a complete
orbifold embedding.

2. Orbifold Background

Although there are many references for this background material, we will use our
previous work [5,6] as our standard reference. While much of what we discuss here
works equally well for smooth Cr orbifolds, to simplify the exposition, we restrict
ourselves to smooth C∞ orbifolds. Throughout, the term smooth means C∞. This
results in no loss of generality [5, Proposition 3.11; 13]. Note that the classical
definition of orbifold given below is modeled on the definition in Thurston [19] and
that these orbifolds are referred to as classical effective orbifolds in [1].

Definition 3. An n-dimensional smooth orbifold O, consists of a paracompact,
Hausdorff topological space XO called the underlying space, with the following
local structure. For each x ∈ XO and neighborhood U of x, there is a neighborhood
Ux ⊂ U , an open set Ũx diffeomorphic to Rn, a finite group Γx acting smoothly
and effectively on Ũx which fixes 0 ∈ Ũx, and a homeomorphism φx : Ũx/Γx → Ux
with φx(0) = x. These actions are subject to the condition that for a neighborhood

Uz ⊂ Ux with corresponding Ũz ∼= Rn, group Γz and homeomorphism φz : Ũz/Γz →
Uz, there is a smooth embedding ψ̃zx : Ũz → Ũx and an injective homomorphism
θzx : Γz → Γx so that ψ̃zx is equivariant with respect to θzx (that is, for γ ∈
Γz, ψ̃zx(γ · ỹ) = θzx(γ) · ψ̃zx(ỹ) for all ỹ ∈ Ũz), such that the following diagram
commutes:

Ũz
ψ̃zx //

��

Ũx

��
Ũz/Γz

ψzx=ψ̃zx/Γz //

φz

��

Ũx/θzx(Γz)

��
Ũx/Γx

φx

��
Uz

⊂ // Ux
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We will refer to the neighborhood Ux or (Ũx,Γx) or (Ũx,Γx, ρx, φx) as an orbifold

chart, and write Ux = Ũx/Γx. In the 4-tuple notation, we are making explicit the

representation ρx : Γx → Diff∞(Ũx). The isotropy group of x is the group Γx. The
definition of orbifold implies that the germ of the action of Γx in a neighborhood of
the origin of Rn is unique, so that by shrinking Ũx if necessary, Γx is well-defined
up to isomorphism. The singular set of O is the set of points x ∈ O with Γx 6= {e}.
More detail can be found in [5].

2.1. Smooth Suborbifolds. Originally, in [19], the notion of an m–suborbifold P
of an n–orbifold O required P to be locally modeled on Rm ⊂ Rn modulo finite
groups. That is, the local action on Rm is induced by the local action on Rn. As
interest in the differential topology of orbifolds grew, it was discovered early, for
instance in [4], that this definition was too restrictive to admit, for example, the
diagonal embedding of an orbifold as a suborbifold of the product orbifold. Other
authors [1,9,10] overcame this difficulty by defining their suborbifolds explicitly as
images of their particular notion of orbifold embedding in analogy with the case
of manifolds. In [7], we defined a notion of suborbifold which is general enough to
include the diagonal embedding as a suborbifold of the product, but is independent
of our notion of orbifold embedding which we recall in section 3. Using our definition
of suborbifold we can also easily identify those suborbifolds in the original sense
of Thurston [19]. We refer to them as full suborbifolds. Recall the definition of
suborbifold from [7]:

Definition 4. An (embedded) suborbifold P of an orbifold O consists of the fol-
lowing:

(1) A subspace XP ⊂ XO equipped with the subspace topology
(2) For each x ∈ XP and neighborhood W of x in XO there is an orbifold chart

(Ũx,Γx, ρx, φx) about x in O with Ux ⊂ W , a subgroup Λx ⊂ Γx of the

isotropy group of x in O and a ρx(Λx) invariant submanifold Ṽx ⊂ Ũx ∼=
Rn, so that (Ṽx,Λx/Ωx, ρx|Λx

, ψx) is an orbifold chart for P where Ωx ={
γ ∈ Λx | ρx(γ)|Ṽx

= Id
}

. (In particular, the intrinsic isotropy subgroup at

x ∈ P is Λx/Ωx), and

(3) Vx = ψx(Ṽx/ρx(Λx)) = Ux ∩XP is an orbifold chart for x in P.

Implicit in this definition is the requirement that the invariant submanifolds Ṽx
be smooth, and that the collection of charts {(Ṽx,Λx/Ωx, ρx|Λx

, ψx)} satisfy the
compatibility conditions of definition 3, thus giving P the structure of a smooth
orbifold. Condition (2) of this definition is not very restrictive as we shall see later
in this section. Thurston’s notion of suborbifold [19] is equivalent to adding the
condition that Λx = Γx at all x in the underlying topological space of P, and so we
make the following definition:

Definition 5. P ⊂ O is a full suborbifold of O if P is a suborbifold with Λx = Γx
for all x ∈ P.

When necessary for clarity, we will use the notation Γx,O to denote the intrinsic
isotropy of a point x in an orbifold O, and use the subscript O as well on needed
subgroups of Γx,O. Observe that in the case of a suborbifold P ⊂ O we always have
the following exact sequence of groups

1 −→ Ωx,O −→ Λx,O ⊂ Γx,O −→ Γx,P −→ 1
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where Γx,P denotes the intrinsic isotropy group of P at x.
In characterizing those suborbifolds that are images of orbifold embeddings, we

need the following two definitions.

Definition 6. We say that P ⊂ O is a split suborbifold of O if the exact sequence
above is (right) split for all x ∈ P. That is, there is a group homomorphism
σ : Γx,P → Λx,O such that the composition q ◦ σ = Id, where q : Λx,O → Γx,P is
the quotient homomorphism:

1 // Ωx,O // Λx,O
q // Γx,P
σ
jj

// 1.

Note that if P ⊂ O is split, we have Λx,O ∼= Ωx,O o Γx,P , a semidirect product,
and in the case that the groups are abelian Λx,O ∼= Ωx,O×Γx,P , the direct product.
Of course, if Ωx,O or Γx,P is trivial, then P is split as well.

Definition 7. We say that P ⊂ O is a saturated suborbifold of O if for each x ∈ P
and ỹ ∈ Ṽx, we have that (Γx,O · ỹ) ∩ Ṽx = Λx,O · ỹ.

The saturation condition can be thought of as a kind of orbit maximality condi-
tion on the group Λx,O ⊂ Γx,O relative to the invariant submanifold Ṽx. Observe
that, by definition, every full suborbifold is automatically saturated.

Example 8. Let Q = R/Z2 be the smooth orbifold (without boundary) where Z2

acts on R via γ · x = −x. The underlying topological space XQ of Q is [0,∞) and
the isotropy subgroups are {e} for x ∈ (0,∞) and Z2 for x = 0. Let O = Q × Q
be the smooth product orbifold (without boundary). See [5, Definition 2.12]. The
underlying space for O can be identified with the closed first quadrant and the
singular points of O lie in one of three connected singular strata: the positive x
axis, the positive y axis (corresponding to those points with Z2 isotropy), and the
origin which has Z2×Z2 isotropy. Then P = {0}×Q is a full (and thus, saturated)
suborbifold of O. To see this, note that Γ(0,0),P ∼= Z2, Γ(0,0),O ∼= Z2×Z2, and that
Ω(0,0),O = {γ ∈ Γ(0,0),O : γ |{0}×R= Id} ∼= Z2. Thus, Γ(0,0),P ∼= Γ(0,0),O/Ω(0,0),O.
Similarly, P = Q× {0} is a full suborbifold. Each of these suborbifolds is split as
well. See figure 1.

Q OP

Z2
Z2 × Z2

Q
OP

Z2
Z2

Figure 1. Examples 8 and 9

Example 9. Let Q and O be as in example 8. Then P = {1} × Q is a full
(thus, saturated), split suborbifold of O. In this case, note that Γ(1,0),P ∼= Z2,
Γ(1,0),O ∼= Z2, and that Ω(1,0),O = {γ ∈ Γ(1,0),O : γ |{1}×R= Id} = {e}. Thus,
Γ(1,0),P ∼= Γ(1,0),O/Ω(1,0),O. See figure 1.
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Example 10. (See [5, Example 2.15]) Let Q and O be as in example 8. Then the
diagonal P = diag(Q) = {(x, x) | x ∈ Q} ⊂ O is a suborbifold. Here, Γ(0,0),P ∼= Z2,
Γ(0,0),O ∼= Z2 × Z2, and Ω(0,0),O = {γ ∈ Γ(0,0),O : γ |diag(R)⊂R2= Id} = {e}. Note
that Γ(0,0),P � Γ(0,0),O/Ω(0,0),O. Thus, P is not a full suborbifold. However, P is
split and saturated since Γ(0,0),P ∼= Λ(0,0),O/Ω(0,0),O, where Z2

∼= Λ(0,0),O ⊂ Γ(0,0),O
is the diagonal embedding of Z2 ↪→ Z2 × Z2 given by γ 7→ (γ, γ). See figure 2.

Q
O

P
Z2

Z2 ⊂ Z2 × Z2

{e}

S

S
O

{e} ⊂ Z2

Figure 2. Examples 10 and 11

Example 11. Let O be as in example 8. Consider the circle S ⊂ O of radius 1
centered at (2, 1). Then S is a suborbifold of O that is not a full suborbifold. To

see this, just note that at the point x = (2, 0) ∈ O any lift of S to Ũx ∼= R2 in a
neighborhood of x, cannot be an invariant submanifold unless we choose Λx,O =
{e}. In this case, we see that the intrinsic isotropy group of S at x is trivial which it
must be since S is actually a compact 1-dimensional manifold. That is, a compact
1-dimensional orbifold with trivial orbifold structure. It is easy to see that S is
saturated and split as well. See figure 2.

Each of the previous examples will be seen to be the image of an orbifold em-
bedding in section 3.2. However, the following three examples of suborbifolds will
be shown not to be the image of an orbifold embedding.

Example 12. Let O = C2/Z4, where Z4 acts on C2 via the matrix group

Z4
∼=
{(

ik 0

0 (−1)
k

)
: k ∈ {0, 1, 2, 3}

}
.

Then P = ({0}×C)/Z4
∼= C/Z2 is a full, (hence, saturated) suborbifold ofO. In this

case, for x = (0, 0), we have Ωx,O ∼= Z2, Λx,O = Γx,O ∼= Z4, and Γx,P ∼= Z2. Hence,
the corresponding suborbifold exact sequence for P is 1 → Z2 → Z4 → Z2 → 1
which is clearly not split.

The next example illustrates how flexible the seemingly straightforward defini-
tion of suborbifold actually is.

Example 13. Consider the 2-dimensional orbifolds O1 = C = C/Z1,O2 = C/Z2,
O3 = C/Z4, and O4 = C/Z8. Here Zk acts on C via multiplication by e2πi/k, z 7→
e2πi/kz. According to definition 4, we have O1 ⊂ O2 ⊂ O3 ⊂ O4 as suborbifolds.
The underlying topological spaces XOn are all (topologically) homeomorphic, to a
standard cone over a circle. It is easily checked that none of these is a saturated
suborbifold of one of the others and since Ω0,On

= {e}, Om ⊂ On, (m < n) are all
split suborbifolds.
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Example 14. Let O and P be as in example 12. Let Q = diag(P) = {(x, x) ∈
O×O | x ∈ P}. Let R = O×O. Let x = (0, 0). Then Γx,R ∼= Z4×Z4. Analogous
to example 10, we see that Γx,Q ∼= Z2, Λx,R ∼= Z4, and Ωx,R ∼= Z2. Thus, Q is not
split in R and is not a full suborbifold of R. On the other hand, it is not hard to
see that Q is saturated in R.

Our last example shows that even though the underlying space of a smooth
orbifold (without boundary) may be topologically embedded as a subspace of the
underlying space of another smooth orbifold, this subspace (with its independent
orbifold structure) may not be a suborbifold of the ambient orbifold.

Example 15. Let O be a so-called Zp-teardrop, and let Q = R/Z2 be as in
example 8, a smooth one-dimensional orbifold (without boundary). Let XQ ⊂ XO
be topologically embedded as a half-interval starting at the point x. See figure 3.
As a non-trivial 1-orbifold, the intrinsic isotropy group for Q at x must be Z2.
Thus, the order of the ambient isotropy group, Γx,O, must be even. We conclude
that Q is not a suborbifold of O when p is odd. Of course, if p is even, then it is
possible for Q to be a suborbifold of O which is saturated and split and thus an
embedded suborbifold.

Zp

Q

Figure 3. Example 15

3. Smooth Mappings Between Orbifolds

In the literature, there are four related definitions of maps between orbifolds
which are based on the classical Satake-Thurston approach to orbifolds via atlases
of orbifold charts. In this paper, we use the notion of complete orbifold map. It
is distinguished from the other notions of orbifold map in that it keeps track of all
defining data. All other notions of orbifold map descend from the complete orbifold
maps by forgetting information. In the special case of embeddings, however, the
property of being an embedding passes down from the complete orbifold maps to
the level of orbifold maps. This observation requires only an understanding on
how these two notions of orbifold map are related to one another. We point this
out explicitly in our exposition below. We refer the reader to [6] for the necessary
background details and in what follows we use the notation of [5, Section 2].

The original motivation for defining the notion of complete orbifold map was to
make meaningful and well-defined certain geometric constructions involving orb-
ifolds and their maps. The need to be careful in defining an adequate notion of
orbifold map was already noted in the work of Moerdijk and Pronk [15] and Chen
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and Ruan [8] and was missing from Satake’s original work on V -manifolds [17,18].
More recently, Pohl [16], developed another notion of orbifold morphism to address
some inconsistencies in earlier work using the groupoid approach to orbifolds.

3.1. Mappings Between Orbifolds.

Definition 16. A C∞ complete orbifold map ?f = (f, {f̃x}, {Θf,x}) between
smooth orbifolds P and O consists of the following:

(1) A continuous map f : XP → XO of the underlying topological spaces.
(2) For each y ∈ P, a group homomorphism Θf,y : Γy → Γf(y).

(3) A smooth Θf,y-equivariant lift f̃y : Ũy → Ṽf(y) where (Ũy,Γy) is an orbifold

chart at y and (Ṽf(y),Γf(y)) is an orbifold chart at f(y). That is, the
following diagram commutes:

Ũy
f̃y //

��

Ṽf(y)

��
Ũy/Γy

f̃y/Θf,y(Γy) //

��

Ṽf(y)/Θf,y(Γy)

��
Ṽf(y)/Γf(y)

��
Uy

f // Vf(y)

(?4) (Equivalence) Two complete orbifold maps ?f = (f, {f̃x}, {Θf,x}) and ?g =

(g, {g̃x}, {Θg,x}) are considered equivalent if for each x ∈ P, f̃x = g̃x as

germs and Θf,x = Θg,x. That is, there exists an orbifold chart (Ũx,Γx) at

x such that f̃x|Ũx
= g̃x|Ũx

and Θf,x = Θg,x. Note that this implies that
f = g.

The set of smooth complete orbifold maps from P toO will be denoted by C∞?Orb(P,O).
For P compact (without boundary), C∞?Orb(P,O) carries the structure of a smooth
Fréchet manifold [6].

If we replace (?4) in definition 16 by

(4) (Equivalence) Two complete orbifold maps (f, {f̃x}, {Θf,x}) and

(g, {g̃x}, {Θg,x}) are considered equivalent if for each x ∈ P, f̃x = g̃x as

germs. That is, there exists an orbifold chart (Ũx,Γx) at x such that

f̃x|Ũx
= g̃x|Ũx

(which as before implies f = g),

where we have dropped the requirement that Θf,x = Θg,x, we recover the notion

of orbifold map (f, {f̃x}) which appeared in [5, Section 3]. Thus, the set of orbifold
maps C∞Orb(P,O) can be regarded as the equivalence classes of complete orbifold
maps under the less restrictive set-theoretic equivalence (4). For P compact (with-
out boundary), C∞Orb(P,O) carries the structure of a stratified space whose strata
are modeled on smooth Fréchet manifolds [6].
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3.2. Orbifold Embeddings.

Definition 17. A complete orbifold map ?f = (f, {f̃x}, {Θf,x}) between smooth
orbifolds P and O is a complete orbifold embedding if the map f : XP → XO
is a topological embedding of the underlying spaces, each of the homomorphisms
Θf,y : Γy → Γf(y) is injective, and on each chart, the Θf,y-equivariant local lifts

f̃y : Ũy → Ṽf(y) are smooth embeddings.

One should observe that the condition that the equivariant local lifts f̃x are
embeddings automatically implies that the corresponding homomorphisms Θf,x

are injective. For, if there exists γ ∈ Γx with Θf,x(γ) = {e}, then equivariance of

f̃x yields f̃x(γ · ỹ) = Θf,x(γ) · f̃x(ỹ) = f̃x(ỹ) for all ỹ ∈ Ũx. Since f̃x is an embedding
this implies that γ = {e}, and thus Θf,x is injective. Thus, the condition that Θf,y

be injective is redundant for embeddings. As a consequence, there is a sensible
definition of orbifold embedding in the category of orbifold maps as well:

Definition 18. An orbifold map f = (f, {f̃x}) between smooth orbifolds P and O
is an orbifold embedding if the map f : XP → XO is a topological embedding of the
underlying spaces, and on each chart, the Θf,y-equivariant local lifts f̃y : Ũy → Ṽf(y)

are smooth embeddings.

The following example from [6, section 2] is illustrative.

Example 19. Let Q = R/Z2 be as in example 8. Consider the inclusion (em-

bedding) f : Q → Q × Q × Q, y 7→ (y, 0, 0), where f̃x(ỹ) = (ỹ, 0, 0). Note that

f̃0 is equivariant with respect to both Θf,0(γ) = (γ, e, e) and Θ′f,0(γ) = (γ, γ, γ).

Thus, we have two distinct complete orbifold embeddings ?f = (f, {f̃x}, {Θf,x}) and

?f
′ = (f, {f̃x}, {Θ′f,x}) which represent the same orbifold embedding f = (f, {f̃x}).

In each case, observe that both Θf,x and Θ′f,x are injective confirming the remarks
which followed definition 17.

For open embeddings, that is, in the case where dim(P) = dim(O), it is useful
to note that the phenomenon in example 19 cannot occur [6, section 4]. To see

this, note that if two complete orbifold embeddings ?f = (f, {f̃x}, {Θf,x}) and

?f
′ = (f, {f̃x}, {Θ′f,x}) represent the same orbifold embedding f = (f, {f̃x}), then

equivariance of f̃x implies that f̃x(γ · ỹ) = Θf,x(γ) · f̃x(ỹ) = Θ′f,x(γ) · f̃x(ỹ) for all

ỹ ∈ Ũx and γ ∈ Γx. Thus, [Θ′f,x(γ)−1Θf,x(γ)] · f̃x(ỹ) = f̃x(ỹ). Openness of the

embedding implies that there exists ỹ such that f̃x(ỹ) is not a singular point of

Ṽf(x). This implies that Θ′f,x(γ)−1Θf,x(γ) = e since Γf(x) acts effectively, whence

Θf,x = Θ′f,x and ?f = ?f
′.

4. Proof of theorem 1 and Corollary 2

Proof of part (1). For each x ∈ XP , let (Ũx,Γx,O, ρx, φx) be an orbifold chart for

O about x. Let Ṽx ⊂ Ũx, Λx,O, Ωx,O, ψx, and Γx,P be as in the definition of

suborbifold. Denote by ĩx : Ṽx ↪−→ Ũx the inclusion map.
Let qx : Ũx/Λx,O → Ũx/Γx,O be the natural quotient map and define φ′x =

φx ◦ qx ◦ ĩx/Λx,O : Ṽx/Λx,O → Ux:
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Ṽx
ĩx //

��

Ũx

��
Ṽx/Λx,O

ĩx/Λx,O //

φ′
x=

φx◦ qx◦ ĩx/Λx,O

!!

Ũx/Λx,O

qx

��
Ũx/Γx,O

φx

��
Ux

For ỹ ∈ Ṽx, let Λx,O(ỹ) = {γ ∈ Γx,O : γ · ỹ ∈ Ṽx}. Then, Λx,O ⊂
⋂
ỹ∈Ṽx

Λx,O(ỹ).

By definition, P is saturated if and only if Λx,O · ỹ = Λx,O(ỹ) · ỹ for all ỹ ∈ Ṽx.
We claim that φ′x is a homeomorphism onto its image if and only if P is saturated.
To see this, note that P is not saturated if and only if there exists x ∈ XP and
δ ∈ Γx,O so that for some ỹ ∈ Ṽx, δ · ỹ ∈ Ṽx, but δ · ỹ 6= λ · ỹ for any λ ∈ Λx,O. Thus,
z̃ = δ · ỹ satisfies Λx,O · z̃ 6= Λx,O · ỹ. Since φ′x(Λx,O · z̃) = φ′x(Λx,O · ỹ), because
ỹ and z̃ are in the same orbit under the full group Γx,O, we see that φ′x is not a
homeomorphism. Thus, we have shown that if φ′x is a homeomorphism, then P is
saturated. To show that P is saturated implies φ′x is a homeomorphism, note that
φ′x is clearly continuous, and since Γx,O is finite, φ′x is open. As shown above, P
saturated implies that φ′x is injective.

Now, since Ωx,O fixes Ṽx by definition, there is a natural identification I :

Ṽx/Λx,O ↔ Ṽx/(Λx,O/Ωx,O) = Ṽx/Γx,P and we have the diagram:

Ṽx
ĩx //

��

Ũx

��
Ṽx/Λx,O

ĩx/Λx,O //

φ′
x

!!

I

Ũx/Λx,O

qx

��
Ṽx/Γx,P

ψx

��

Ũx/Γx,O

φx

��
Vx

ι // Ux

Let P ′ be the orbifold defined by the local charts (Ṽx,Γx,P , ρ
′
x, ψx), where ρ′x is

the induced action of Γx,P on Ṽx by restricting ρx to Λx,O and the action to Ṽx.
The required topological embedding ι : XP′ → XO with ι(XP′) = XP is given in
local charts by: ι = φ′x ◦ I−1 ◦ψ−1

x : Vx → Ux and is covered by the inclusion maps
ĩx. This completes the proof of part (1). �

Proof of part (2). Let σx,P be a splitting of the exact sequence
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1 // Ωx,O // Λx,O
ιx,O
↪−→ Γx,O

q // Λx,O/Ωx,O = Γx,P //

σx,P

kk
1.

Let Θι,x = ιx,O ◦σx,P : Γx,P → Γx,O where ιx,O = Λx,O ↪−→ Γx,O is the inclusion
map. Θι,x is clearly an injective homomorphism and note that the existence of

Θι,x is equivalent to the existence of σx,P . Let ĩx : Ṽx ↪−→ Ũx be the inclusion

map. It is easy to see that ĩx is Θι,x-equivariant: Let ỹ ∈ Ṽx and let γ ∈ Γx,P .

Then, γ · ỹ = ĩx(γ · ỹ). On the other hand, Θι,x(γ) = γω for some ω ∈ Ωx,O
since q ◦ Θι,x = Id. Thus, Θι,x(γ) · ỹ = γω · ỹ = γ · ỹ, since ω · ỹ = ỹ. Thus,

?ι = (ι, {̃ix}, {Θι,x}) : P ′ → P ⊂ O is a complete orbifold embedding that covers
the topological embedding ι : XP′ → XP ⊂ XO. This completes the proof of part
(2). �

Proof of Corollary 2. X is the point set of a length-minimizing curve in O, so there
exists a unit-speed parametrization c : [a, b]→ O such that c([a, b]) = X. We show
that X is the underlying space of a suborbifold P ⊂ O that is saturated and split
and thus is the image of an orbifold embedding by theorem 1. Fix t ∈ [a, b], and
let x = c(t). It follows from the characterization of length minimizing geodesic
segments in [2, theorem 3, pg. 32] or [3, proposition 15] that c is contained in the
closure of single connected open stratum of O. That is, c|(a,b) lies in a subspace of
O with constant isotropy. This implies that X has the structure of a suborbifold
P ⊂ O. These results also imply that Γx,P = {e}, and thus P has a trivial orbifold

structure and so P is split. Let c̃x be a lift of c to Ũx. Since Γx,P = {e}, we
have Λx,O · ỹ = ỹ for all ỹ ∈ c̃x. If P were not saturated at x, then there exists
s < s′ ∈ [a, b] and γ ∈ Γx,O with γ · c̃x(s) = c̃x(s′). This implies that c contains
a loop in O. This contradicts the property that a length-minimizing curve c must
minimize length between any of its points. This contradiction implies P is saturated
and thus, by theorem 1, P is the image of a complete orbifold embedding. This
completes the proof of corollary 2. �

5. Table of Examples and Suborbifold Properties

Here is a summary table of properties of suborbifolds possessed by the examples
presented in this article which show that all possible combinations of properties
that are not implied by others can occur:

Example Suborbifold Full Saturated Split Image of Orbifold Embedding
8 Yes Yes Yes Yes Yes
9 Yes Yes Yes Yes Yes

10 Yes No Yes Yes Yes
11 Yes No Yes Yes Yes
12 Yes Yes Yes No No
13 Yes No No Yes No
14 Yes No Yes No No
15 No – – – No
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